3.6 CuZn36 - C27000 - CW507L

应用范围												
电子行业的电子元器件,安装部件基本材料。随着锌含量的提高,对应的金属成本降低。												
物理性能									化学成分 (参考值) %			
	密度 *			克/厘米³			8.45		铜 63.5 - 65.5	63.5 - 65.5		
导热性 *			瓦/(米·开)			121			锌 余量	余量		
	导电率	***	毫西门子/米			14			镍 max. 0.3	max. 0.3		
	导电率	***	IACS (%)			24			锡 max. 0.1	max. 0.1		
	$10^{-6}\mathrm{K}$			20.2			铁 max. 0.05	max. 0.05				
	弹性模量	*	千兆帕			110						
状态	强度等级	抗拉强度	屈服强度	延伸率	硬度	导电性	弯曲性能		各种黄铜合金导电率 (IACS%)和屈服强度的比较			
		T.S.	Rp _{0.2}	A50	(分支法)		R/t ^{1) 2) 3)} 90°		■IACS(%) ■屈服强度(Mpa)			
		最小值-最大值	最小值	最小值	(参考值)				100	600		
		兆帕	兆帕	%	维氏硬度	毫西门子/米	好的方向	坏的方向	80	- 500		
			八亿金土				铜带厚度	铜带厚度		- 400		
			()仅参考				≤0.5mm	≤0.5mm		300		
冷加工硬化	R300	300 - 370	(max. 180)	38	55 - 105	14	0	0	40	- 200		
冷加工硬化	R350	350 - 430	(170)	19	95 - 125	14	0	0	20 20 20 20 20 20 20 20 20 20 20 20 20 2			
冷加工硬化	R410	410 - 490	(300)	8	120 - 155	14	0	0	- 100			
冷加工硬化	R480	480 - 560	(430)	3	150 - 180	14	0.5	2	0 050 050 090 050 00 050	0		
冷加工硬化	R550	min. 550	(500)	-	min. 170	14	1	3	CUZN5 R350 CUZN15 R480 CUZN33 R500 CUZN36 R550 CUZN37 R5). ₇₋		
冷加工硬化	R630	min. 630	(600)	-	min. 190	14	-	-				

^{*}室温下的参考值

^{**}温度范围 20 - 300℃

^{***} 最低强化状态下的数值

¹⁾ r = x·t (适用于铜带厚度t≤0.50mm)

²⁾ 样品宽度=10mm/可以根据要求在更窄的宽度进行弯曲测试(评估方法依据手册5.4.2页)

³⁾ 应力消除状态下的数值