

合金牌号

ΕN

DIN CEN/TS 13388

UNS

C42400

这种合计符合适用于电器和电子设备的欧盟RoHS 2002/96/CE指令,以及适用于汽车的2002/53/CE指令

主要应用

汽车领域:

开关和继电器、触点、连接器、端子

电气领域:

开关和继电器、触点、连接器、端子、电 器行业零部件、冲压件

关键特性

- 优异的冷成型性能
- 良好的耐腐蚀性
- 高强度和高硬度和良好的导电性
- 应力腐蚀开裂敏感性低
- 弹簧性能良好

优先应用领域

连接器

开大和 继电器

载流能力

Χ

弹簧触点

XX

Χ

XX

x = 非常适合 xx = 特别适合

化学成分

化学成分	含量 百分比		化学成分	含量 百分比	
铜	87-91	%	硅	0.1-0.3	%
锡	0.05-0.5	%	铬	0.1-0.5	%
锌	其余	%	锆	0.05-0.2	%
镍	0.5-1.5	%			%

物理性能

性能 20℃退火状态下的典型值	值	单位
密度	8.7	g/cm ³
热膨胀系数 20 100℃	17.5	10 ⁻⁶ /K
20 300°C	17.7	10 ⁻⁶ /K
比热容	0.384	J/(g-K)
热导率	134	W/(m·K)
导电率 $(1 \text{ MS/m} = 1 \text{ m/}(\Omega \text{ mm}^2)$	19	MS/m
导电率 (IACS)	33	%
电阻温度系数 (0 100°C)	/	10 ⁻³ /K
弹性模量 (1 GPa = 1 kN/mm²) 冷成型	115	GPa
退火状态	130	GPa

机械性能 (EN 1652)

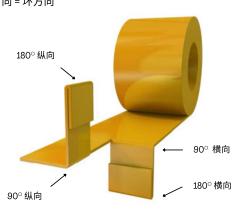
状态	抗拉强度	屈服强度 最小值	延伸率 最小值	硬度
	Rm	Rp _{0.2}	A_{50mm}	HV*
	MPa	MPa	%	HV
R460 (TM00)	460-540	430*	10	140-180
R520 (TM01)	520-600	500*	5	150-190
R560 (TMO2)	560-640	550*	2	170-210
R600 (TM03)	600-680	590*	1	180-220
*仅供参考				

导电率

导电率 受化学成分的影响很大。高度的冷变形和细小的晶粒尺寸会适度 降低导电率。可以确定最低导电率水平。

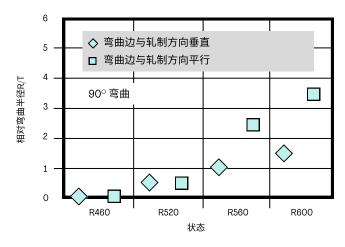
耐腐蚀性*

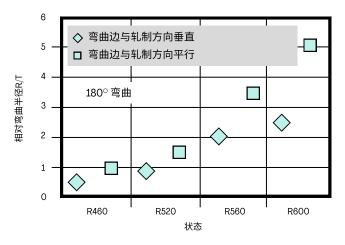
- 耐以下介质: 因形成保护性铜锈,具有良好的大气腐蚀抗性。C42400在自然和工业大气(包括海洋大气)中具有良好的耐腐蚀性。耐海水和工业大气腐蚀性能良好,C42400耐工业水和饮用水、水性和碱性溶液(非氧化性)、纯净水蒸汽(蒸汽)、非氧化性酸(溶液中无氧)和盐类、中性盐溶液。
- 应力腐蚀开裂敏感性低。
- 不耐以下介质:氧化性酸、含氰化物、氨或卤素的溶液、水合氨和卤化气体、硫化氢


^{*}欲知更多详情,请致电我们的技术服务部门

加工性能*	
冷成型性能 退火之间最大冷变形量为90%	优异
热成型性能 在790840℃之间	优异
切削加工性 (评级 30)	良好
电镀性能	良好
热镀锡性能	优异
软钎焊、硬钎焊	优异
电阻焊	不太适用
气体保护电弧焊	良好
激光焊	优异
软退火	425-700°C, 1-3 小时
去应力退火	200-300°C, 1-3 小时
*欲知更多详情,请致电我们的技术服务部门	

折弯定义


垂直方向 = 好方向 平行方向 = 坏方向



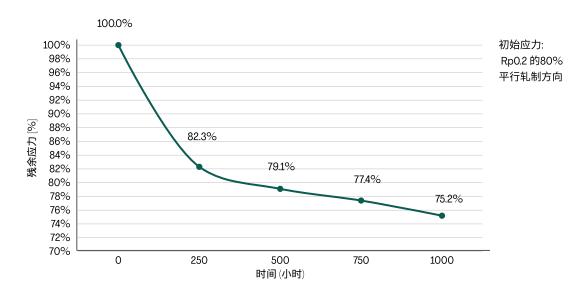
最小弯曲半径计算

要找出最小可能的弯曲半径,请采用 R/T值并参考以下列表示例: R/T = 0.5,厚度为 0.3 mm 最小半径 = (R/T) x 厚度 = 0.5 x 0.3 mm = 0.15 mm

弯曲性能 厚度:≤0.5mm

弯曲试验依据 EN ISO 7438标准,采用宽度为10毫米的试样进行。一般来说,尺寸更小以及厚度更薄的试样,可在无裂纹的情况下实现更小的弯曲半径。如有需要,我们可提供经由化的弯曲状态等级,其性能远超标准质量。 与ASTM E290的结果进行对比时请注意,其中弯曲方向的定义是不同的。

弯曲性能*


状态	厚度范围	90 °	90○弯曲		180°弯曲	
		垂直方向	平行方向	垂直方向	平行方向	
	mm	R/T	R/T	R/T	R/T	
R460 (TM00)	≤0.5	0	0	0.5	1	
R520 (TM01)	≤0.5	0.5	0.5	1	1.5	
R560 (TMO2)	≤0.5	1	2.5	2	3.5	
R600 (TM03)	≤0.5	1.5	3.5	2.5	5	

*根据 EN 1654标准,在弯曲半径10mm时测量可能弯曲半径 = (R/T) x 厚度

松弛性能

热应力消除

应力松弛通过悬臂弯曲实验设备进行测试。该方法考虑了短时间松弛情况,所得数值真实可靠,而其他 测试方法(如管材测试)会夸大松弛性能。松弛数值表明了带材在给定温度下的应力消除情况。由于在 平面带材上测量,变形部件的表现可能有所不同,但不同硬度状态下的比例关系保持不变。

典型测试样品厚度为 0.3-0.6 mm。